Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37893378

RESUMO

This paper presents a Piezoelectric micromechanical ultrasonic transducer (PMUT) based on a Pt/ScAlN/Mo/SiO2/Si/SiO2/Si multilayer structure with a circular suspension film of scandium doped aluminum nitride (ScAlN). Multiphysics modeling using the finite element method and analysis of the effect of different Sc doping concentrations on the resonant frequency, the effective electromechanical coupling coefficient (keff2) and the station sensitivity of the PMUT cell are performed. The calculation results show that the resonant frequency of the ScAlN-based PMUT can be above 20 MHz and its keff2 monotonically rise with the increasing doping concentrations in ScAlN. In comparison to the pure AlN thin film-based PMUT, the static receiving sensitivity of the PMUT based on ScAlN thin film with 35% Sc doping concentration is up to 1.61 mV/kPa. Meanwhile, the static transmitting sensitivity of the PMUT is improved by 152.95 pm/V. Furthermore, the relative pulse-echo sensitivity level of the 2 × 2 PMUT array based on the Sc doping concentration of 35% AlN film is improved by 16 dB compared with that of the cell with the same Sc concentration. The investigation results demonstrate that the performance of PMUT on the proposed structure can be tunable and enhanced by a reasonable choice of the Sc doping concentration in ScAlN films and structure optimization, which provides important guidelines for the design of PMUT for practical applications.

2.
Materials (Basel) ; 15(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35268999

RESUMO

Wearable energy harvesters and sensors have recently attracted significant attention with the rapid development of artificial intelligence and the Internet of Things (IoT). Compared to high-output bulk materials, these wearable devices are mainly fabricated by thin-film-based materials that limit their application. Therefore, the enhancement of output voltage and power for these devices has recently become an urgent topic. In this paper, the lead-free bismuth titanate-barium titanate (0.93(Na0.5Bi0.5)TiO3-0.07BaTiO3(BNBT)) nanoparticles and nanofibers were embedded into the PVDF nanofibers. They produced high inorganic electrical voltage coefficients, high electromechanical coupling coefficients, and environmentally friendly properties that enhance the electromechanical performance of pure PVDF nanofibers, and they are all the critical requirements for modern flexible pressure sensors. In detail, PVDF and PVDF-based composites nanofibers were prepared by electrospinning, and different flexible sandwich composite devices were fabricated by the PDMS encapsulation method. As a result, the six-time enhancement maximum output voltage was obtained in a PVDF-BNBT (fiber)-based composite sensor compared to the pure PVDF one. Our results indicate that the output voltage of the pressure sensors has been significantly enhanced, and the development gate is enabled by analyzing the related physical process and influence mechanism.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120467, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34637988

RESUMO

A novel Au NPs/GeO2 nanozymes are developed as Surface-Enhanced Raman Scattering (SERS) substrates with the promising prospect for detection ChI. Herein, it is discovered that both Au NPs and GeO2 nanozymes have peroxidase-like activity, catalyzing colorless 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue TMBox. Interestingly, compared with single Au NPs or GeO2 nanozymes, the Au NPs/GeO2 nanozymes show stronger peroxidase-like activity, and significantly ameliorated SERS signal of TMBox. The mentioned two enhancements are ascribed to a positive synergistic function of Au NPs/GeO2 nanozymes. Surprisingly, choline iodide (ChI) can inhibit the positive synergy in Au NPs/GeO2 nanozymes, and slow down the reaction of TMB-H2O2-Au NPs/GeO2 system. On this foundation, a new Au NPs/GeO2 SERS technique with high sensitivity, label-free detection method of choline iodide (ChI) is established, suggesting that Au NPs/GeO2 nanozymes have the potential application of water environment.


Assuntos
Ouro , Nanopartículas Metálicas , Colina , Peróxido de Hidrogênio , Iodetos , Peroxidase , Peroxidases , Análise Espectral Raman
4.
Materials (Basel) ; 14(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34771961

RESUMO

In this work, we systematically studied the deposition, characterization, and crystal structure modeling of ScAlN thin film. Measurements of the piezoelectric device's relevant material properties, such as crystal structure, crystallographic orientation, and piezoelectric response, were performed to characterize the Sc0.29Al0.71N thin film grown using pulsed DC magnetron sputtering. Crystal structure modeling of the ScAlN thin film is proposed and validated, and the structure-property relations are discussed. The investigation results indicated that the sputtered thin film using seed layer technique had a good crystalline quality and a clear grain boundary. In addition, the effective piezoelectric coefficient d33 was up to 12.6 pC/N, and there was no wurtzite-to-rocksalt phase transition under high pressure. These good features demonstrated that the sputtered ScAlN is promising for application in high-coupling piezoelectric devices with high-pressure stability.

5.
Adv Mater ; 33(44): e2104107, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510578

RESUMO

Although excellent dielectric, piezoelectric, and pyroelectric properties matched with or even surpassing those of ferroelectric ceramics have been recently discovered in molecular ferroelectrics, their successful applications in devices are scarce. The fracture proneness of molecular ferroelectrics under mechanical loading precludes their applications as flexible sensors in bulk crystalline form. Here, self-powered flexible mechanical sensors prepared from the facile deposition of molecular ferroelectric [C(NH2 )3 ]ClO4 onto a porous polyurethane (PU) matrix are reported. [C(NH2 )3 ]ClO4 -PU is capable of detecting pressure of 3 Pa and strain of 1% that are hardly accessible by the state-of-the-art piezoelectric, triboelectric, and piezoresistive sensors, and presents the ability of sensing multimodal mechanical forces including compression, stretching, bending, shearing, and twisting with high cyclic stability. This scaling analysis corroborated with computational modeling provides detailed insights into the electro-mechanical coupling and establishes rules of engineering design and optimization for the hybrid sponges. Demonstrative applications of the [C(NH2 )3 ]ClO4 -PU array suggest potential uses in interactive electronics and robotic systems.

6.
ACS Appl Mater Interfaces ; 7(9): 5066-75, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25664585

RESUMO

In this work, an electric field-induced giant strain response and excellent photoluminescence-enhancement effect was obtained in a rare-earth ion modified lead-free piezoelectric system. Pr(3+)-modified 0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 ceramics were designed and fabricated by a conventional fabrication process. The ferroelectric, dielectric, piezoelectric, and photoluminescence performances were systematically studied, and a schematic phase diagram was constructed. It was found the Pr(3+) substitution induced a transition from ferroelectric a long-range order structure to a relaxor pseudocubic phase with short-range coherence structure. Around a critical composition of 0.8 mol % Pr(3+), a giant reversible strain of ∼0.43% with a normalized strain Smax/Emax of up to 770 pm/V was obtained at ∼5 kV/mm. Furthermore, the in situ electric field enhanced the photoluminescence intensity by ∼40% in the proposed system. These findings have great potential for actuator and multifunctional device applications, which may also open up a range of new applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...